Generalized Sampling and Variance in Counterfactual Regret Minimization

نویسندگان

  • Richard G. Gibson
  • Marc Lanctot
  • Neil Burch
  • Duane Szafron
  • Michael H. Bowling
چکیده

In large extensive form games with imperfect information, Counterfactual Regret Minimization (CFR) is a popular, iterative algorithm for computing approximate Nash equilibria. While the base algorithm performs a full tree traversal on each iteration, Monte Carlo CFR (MCCFR) reduces the per iteration time cost by traversing just a sampled portion of the tree. On the other hand, MCCFR’s sampled values introduce variance, and the effects of this variance were previously unknown. In this paper, we generalize MCCFR by considering any generic estimator of the sought values. We show that any choice of an estimator can be used to probabilistically minimize regret, provided the estimator is bounded and unbiased. In addition, we relate the variance of the estimator to the convergence rate of an algorithm that calculates regret directly from the estimator. We demonstrate the application of our analysis by defining a new bounded, unbiased estimator with empirically lower variance than MCCFR estimates. Finally, we use this estimator in a new sampling algorithm to compute approximate equilibria in Goofspiel, Bluff, and Texas hold’em poker. Under each of our selected sampling schemes, our new algorithm converges faster than MCCFR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Omputation and D Ecision - M Aking in L Arge E Xtensive F Orm G Ames

In this thesis, we investigate the problem of decision-making in large two-player zero-sumgames using Monte Carlo sampling and regret minimization methods. We demonstrate fourmajor contributions. The first is Monte Carlo Counterfactual Regret Minimization (MC-CFR): a generic family of sample-based algorithms that compute near-optimal equilibriumstrategies. Secondly, we develop a...

متن کامل

Monte Carlo Sampling for Regret Minimization in Extensive Games

Sequential decision-making with multiple agents and imperfect information is commonly modeled as an extensive game. One efficient method for computing Nash equilibria in large, zero-sum, imperfect information games is counterfactual regret minimization (CFR). In the domain of poker, CFR has proven effective, particularly when using a domain-specific augmentation involving chance outcome samplin...

متن کامل

Slumbot NL: Solving Large Games with Counterfactual Regret Minimization Using Sampling and Distributed Processing

Slumbot NL is a heads-up no-limit hold’em poker bot built with a distributed disk-based implementation of counterfactual regret minimization (CFR). Our implementation enables us to solve a large abstraction on commodity hardware in a cost-effective fashion. A variant of the Public Chance Sampling (PCS) version of CFR is employed which works particularly well with

متن کامل

Efficient Nash equilibrium approximation through Monte Carlo counterfactual regret minimization

Recently, there has been considerable progress towards algorithms for approximating Nash equilibrium strategies in extensive games. One such algorithm, Counterfactual Regret Minimization (CFR), has proven to be effective in two-player zero-sum poker domains. While the basic algorithm is iterative and performs a full game traversal on each iteration, sampling based approaches are possible. For i...

متن کامل

MCRNR: Fast Computing of Restricted Nash Responses by Means of Sampling

This paper presents a sample-based algorithm for the computation of restricted Nash strategies in complex extensive form games. Recent work indicates that regret-minimization algorithms using selective sampling, such as Monte-Carlo Counterfactual Regret Minimization (MCCFR), converge faster to Nash equilibrium (NE) strategies than their non-sampled counterparts which perform a full tree travers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012